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One-dimensional transient flows of two-phase fluids are examined which are mixtures of 
an ideal gas, which does not conduct heat, and solid particles. The problem of the flow of 
the two-phase mixture into a tube of variable cross section which contains another mixture 
is solved in the self-similar formulation. Here the mixtures can be both inert and combust- 
ible. The problem is reduced to the Cauchy problem for a system of ordinary differential 
equations with auxiliary conditions at the inner surfaces of the discontinuity. Perturba- 
tion theory is used to solve the non-self-similar problem of flow of the combustible gas 
into the inert two-phase mixture. 

i. Let there be a quiescent mixture of gas and solid particles in a tube of variable 
cross section. The motion of the gas with the particles is examined within the framework 
of the model of interacting continua. It is assumed that the gas is ideal and does not con- 
duct heat and that the particles are rigid spheres of identical radius. Brownian motion of 
the particles, their volume fraction, and collisions with each other are not considered. There 
are viscous and thermal interactions between phases. 

At time t = 0 a two-phase mixture with other particles and gas starts to enter the tube 
through an inlet orifice of negligibly small dimensions. As a result, transient motion, 
which is assumed one-dimensional, arises in both mixtures. The cross-sectional area of the 
tube varies in the following manner: F(r) = br ~-I, i ~ v E 3 (r is the distance from the 
inlet orifice, ~ and b are constants, and ~ = i, 2, or 3 for plane, cylindrical, and spheri- 
cal geometry. 

The flow of mass and heat through the inlet is approximated by power-law functions 

M i ( t )  = bruit ~, N ( t )  = b n t ~ ,  ( 1 . 1 )  

where mi, n, a and ~ are constants and i = i, 2. Hereafter, unless stated otherwise, the 
index i refers to the gas and 2 to the particles. The magnitudes (i.i) are related to a 
unit length and area in cylindrical and plane cases, respectively. 

We will assume an initial phase-density distribution of the unperturbed fluid in the 
tube to be Pi0 = Ai r-u , where A i and ~ are constants. The analogous problem has been solved 
[I] in the absence of particles for ~ = 0. The equations of motion for the mixture have the 
form [ 2 ]  

op~ op~v i v - -  1 d~v~ 2) Op 
0--'7 +'--57-" + - - 7  -p~v~ = O, p~--~-= ( i - -  ~ + ( - - t / / ,  

Pi--~- = ( - -  t ) i q  + (2 - -  i) / ( v x - - v 2 ) - - P l .  or + (~ - -  1)7 ' ( 1 .2 )  

di 0 0 
d-t = O--it + v~ -dr' el = e v T , ,  e 2 = cT2, p = (? - -  l )  pxel, 

where Pi, vi, el, and T i are the density, velocity, internal energy, and temperature of the 
phase; p is the pressure; c V and c are the heat capacities; f = Hp=el k (vl - v=) is the inter- 

phase interaction force; q = aiHp2el k (e I - eacv/c is the rate of thermal interaction; H and 

o I are characteristic constants of the interaction, where oi is dimensionless, and H has di- 

mensions L-akT =k-1 The particles are assumed to be chemically inert. 
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( e i o  
The problem is self-similaK [3], if at m ~ 0 the initial phase energies can be neglected 
= 0) and the following conditions are satisfied: 

(I  + a ) ( 2  q-  v - -  ~o) = ( v  - -  0))(3 -}- 15), 

k = 0 , 5 ( 1  - -  6 ) -~ ,  6 = 0 , 5 ( 2  + 13 - -  ~ ) .  ( 1 . 3 )  

If Eqs. (1.3) are fulfilled and el0 ~ 0, only the equilibrium flows, investigated in [4], 
are self-similar. 

We introduce dimensionless functions: 

Vi = vilvls, Bi = pi/pio, ei = T~ITx~, ( 1 . 4 )  

where the index s indicates the gas parameters in the shock wave. These functions depend 
only on the dimensionless parameter % = r/rs, where rs(t) is the coordinate of the front of 
the shock wave which propagates through the mixture in the tube. Dimensional analysis [3] 

yields rs(t) = /n/mlt6/%0. Here %0 is a constant to be determined. The particle parameters 
are considered constant in the shock wave, but the gas parameters are determined from the 
Rankine-Hugoniot equations. 

In the dimensionless functions of (1.4), Eq. (1.2) takes the form 

2R~SlV[ +(v- i ) [ (R~q) '  '~ 1 +GV~R~=--• 

R1SIE 1 - ( y - l )  R1S 1 e 1 -}- GR181 = 

' ~ , I (x2,ghl(~1 e2), SoV2 + GV 2 = Be ,  (V, - -  V2), S2s ~ + Ge2 = ~ 

w h e r e  S i = V i - - ~ - ) ~  ( i = 1 ,  2); G = ~ ( y +  l); 

c V 
• = A2/A5 ~2 = c oh; 

r 2 -i~ 6~/(~_6) ( V " - ~ I  \11(1-~) 

(1.5) 

the primes denote differentiation with respect to %. 

In the shock wave (% = i), the parameters of the fluid are described in the form 

v ~ ( l )  = ~ ( t )  = t ,  R ~ ( i )  = (v + l ) / ( v  - 1), 

v~(l) =~(l) = o, R~(i) = i. ( 1 . 6 )  

Thus, when a shock wave arises in the fluid, the problem reduces to the Cauchy problem 
for ordinary differential equations (1.5) with initial conditions (1.6) on the right: end of 
the integration path [0, i] and with auxiliary conditions on the inner surfaces of the dis- 
continuity. 

Due to the high dimensionality and strong nonlinearity of the equations, a complete 
qualitative investigation of the problem is difficult. However, special sets of the system 
(1.5) can be found which are related to the discontinuities and their properties can be 
found: 

a) The set Vl = 0.5(7 + 1)%, 

8~B~R2 [~1 (e2 - -  el) + 2 (g~ --Y~) ~1 = 2e~R~ [~G + (7 - -  t ) ~ ]  
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corresponds to the contact discontinuity with respect to the gas phase; it is realized for 
> m, 6 < 2/(2 + y~ - m). 

b) The set V 2 = 0.5(7 + i)I corresponds to the contact discontinuity with respect to 
the particles. In order that the density of the solid phase P2 be finite at the disconti- 
nuity the condition elkB(v1 - V 2) = GV 2 must be fulfilled at the discontinuity, which occurs 
in calculations using the method of characteristics. 

?+i~12 c) The surface2 V 1 ~ ] =?(?--l)e I is a surface of weak discontinuities in the gas: 

when substituted into the Rankine-Hugoniot conditions it maps onto itself. 

When the solution intersects with the surface (~--1)2e1=4(V1--~%) there has to be 

a shock at the surface e I = 0. The necessity for this has been derived [I]. 

For e I = 0, Eq. (i) can be integrated easily 

Vfi(v-~)/(6-1) i , e_. = constV~. 

I n  o r d e r  t o  d e t e r m i n e  t h e  jump in  g a s  d e n s i t y  a t  t h e  c o n t a c t  d i s c o n t i n u i t y  a l o n g  t h e  
g a s ,  we u s e  a mass  and  e n e r g y  b a l a n c e  t o  d e t e r m i n e  t h e  c o n s t a n t  X0 and t h e  jump in  i n t e r n a l  
p a r t i c l e  e n e r g y  a t  t h e  c o n t a c t  d i s c o n t i n u i t y  a l o n g  t h e  p a r t i c l e s :  

S rni = + = 1, 2I, 
0 

1 

262 ~ [ -- " 2 V~ ~- 82 /  ltvl + + " R '  

where I i is the coordinate of the contact discontinuity of the i-th phase. 

The solution to the problem was investigated numerically. The calculation was done for 
absolutely identical mixtures with the parameters 7 = 1.4, ~ = 2, and 6 = 0.7. The results 
are shown in Fig. i. The solution contains two contact surfaces and two shock waves. As 
with the explosion problem [2], a peak in the particle density (the 9-1ayer) arises in the 
perturbed region. 

2. Now let the mixture entering the tube be a fuel (such a situation occurs in some 
internal combustion engines). Then a detonation wave and a flame front can propagate through 
it. We neglect the chemical reaction kinetics and the thickness of the zone in which it oc- 
curs. The equilibrium flows are now self-similar (V I = V 2 = V and e I = e 2 = e). In this 
case the two-phase fluid can be considered to be a gas with the reduced parameters p, and 7, 
[3]. For ~ # 0, the self-similarity conditions are written in the form P0 = 0, ~ = 8 = 9 - 

- I, and 6 = i. The problem, with reversed data (an inert gas entering a region with a 

combustible mixture) has been examined [5]. 

We introduce new functions z and W: 

W(~) = vt/r,z(~) =~pt2/9~.  

As has been shown [3], the actual solution to the problem consists of investigating the inte- 

gral of the equation 

dz/dW = r W,  7, v, ~) ( 2 . 1 )  

and analyzing the possible discontinuities. The right side of (2.1) is a known function of 
its arguments [3]. Because the motion of the inert gas for W < 1 is similar to one studied 
previously [i, 4], it is sufficient to study the motion of the combustible mixture along the 
other side of the contact discontinuity for W > i. 
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Let m = 0. Figure 2 shows the pattern of the field of the integrated curves of Eq. 
(2.1) for v = 3 and W > i. The arrows show the direction of decreasing X; the curves 1 and 

2 are for z =72-~_?~(W--I)2 and z = (W - 1) 2. 

The conditions at the shock with heat evolution can be written in the form 

Z 2 

A 2 = 1 

Z 1 +. <w,_,>.)] ', 
" I " 7  w ~  = 1 + ~ (t - A) t + (w~ - O, 

V, (W: -- t )  ~ 

% ( t - w o ,  o - a ) ( l  +~,~A) t + ~ f j ,  
vl (wl - 

v ~ ( w l -  ~)~ + + ~, ( % _  ~)~ ' 

( 2 . 2 )  

where the indices 1 and 2 correspond to the combustible mixture and the reaction products; 
Q is the heat of combustion per unit mass of gas; and D is the velocity of the shock with 
heat emission. 

The inlet corresponds to the point z = 0 and W = ~, which can be reached only along the 
line z = 0. The jump at the line z = 0, which corresponds to the detonation wave, must be 
made at the intersection of the integral curve with the parabola 

I + ?~A 
z = q-c-A- (W t) ~. (2.3) 

For A > O, the parabola (2.3) is higher than the acoustic parabola 
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z = (W - I)~ 
(2.4) 

and the solution is unique. For A = 0, the Chapman-Jouguet condition is satisfied, (2.3) 
coincides with (2.4), and the parabola (2.4) can be reached either from the region z > 
(i - W) or from 

o < ; < ( w  - I)~. ( 2 . 5 )  

In  t h e  s econd  c a s e ,  in  o r d e r  t o  f a l l  in  t h e  r e g i o n  ( 2 . 5 ) ,  a s i m p l e  c o m p r e s s i o n  shock  must  
be i n t r o d u c e d  a t  t h e  i n t e r s e c t i o n  o f  t h e  i n t e g r a l  c u r v e  w i t h  t h e  p a r a b o l a  z = a(W - 1) 2, 
where  1 < a < 272/(Y2 - 1 ) .  I f  A < 0,  t h e n  ( 2 . 3 )  l i e s  below ( 2 . 4 ) ,  and i n t e r s e c t i o n  w i t h  
t h e  p a r a b o l a  i s  p o s s i b l e  o n l y  i f  an a d d i t i o n a l  d e n s i t y  shock  i s  i n t r o d u c e d .  The p o s i t i o n  o f  
t h e  a d d i t i o n a l  shock  can be d e t e r m i n e d  i f  t h e  i n f l o w  o f  t h e  m i x t u r e  i n t o  t h e  t u b e  i s  f i x e d .  

Now l e t  a f l ame  f r o n t  p r o p a g a t e  t h r o u g h  t h e  c o m b u s t i b l e  m i x t u r e .  Because  t h e  f r o n t  i s  
a r a r e f a c t i o n  s h o c k ,  i t  s h o u l d  have  a shock  wave,  which  must  be c o n s t r u c t e d  from t h e  i n t e r -  

s e c t i o n  p o i n t  o f  t h e  i n t e g r a l  c u r v e  w i t h  t h e  p a r a b o l a  z =  2~ ( W - - t )  ~, in  o r d e r  t o  c r o s s  o v e r  yi--I 

to the line z = 0. 

The flame front can be constructed from the intersection points of the integral curve 
with the parabola z = g(W - 1) 2 . The case g > 1 corresponds to subsonic and g < 1 to super- 
sonic combustion. For g = i, the Chapman-Jouguet condition is fulfilled for combustion and 
a simple shock at the flame front is possible. For g < i, the solution exists only with an 
additional shock. 

The outer side of the flame front must correspond to points lying in the region z z > 
2xz(Wz - I)2/(71 - i), with W > i. From the conditions (2.2) we obtain 

2g (2ye -- 1) g2 20 2g 
< <I + --, (2.6) 

where u is the velocity of the flame front through the combustion products. It follows from 

(2.6), in particular, that g ~ ~(2. 

For 2Q/u 2 > (2y2 - i)2/(y2 - 1) 2 , the left side of the inequality in (2.6) is satisfied 
for any g. If 2Q/u 2 < (2y 2 - i)2/(X2 - 1) 2 , then for values of g which satisfy the equation 

2#(27~--I) g2 : 2Q the flame front merges with the accompanying simple shock into a detona- ~,~(%-I) ~,~ .2,  

tion wave. 

Numerical solutions were done for r = 0, v = 3, and P0 = 0. The results for the Chap- 
man-Jouguet detonation are shown in Figs. 3 and 4. Parameters are ratioed to the values in 
the shock wave, which propagates through the inert gas. The equilibrium flows for m = 0 can 
also be studied for a nonzero volume fraction of particles. Here, however, the equation of 
the state of the mixture must be changed: e = p(A + Bp)/p, where A and B are constants. 

The results can be extended to a nonself-similar problem of the flow of a combustible 
gas into an inert two-phase mixture, where the interaction terms f and q are computed from 

more exact formulas 
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i = ( 3 / 8 ) C D  (v  1 - -  u2)Iv1 - -  v 2 [plPJ(P22a), 

q ----- (3,'2) N u  k ( T  1 - -  T2)/(p22a~'), 

where C D is the drag coefficient; Nu is the Nusselt number; k is the thermal conductivity of 
the gas; a is the particle radius; and P22 is the density of the particle material. 

Figure 5 shows the parameters of the two-phase mixture to the right of the contact dis- 
continuity, which is found by perturbation theory [6] for v = 1 and 2p22a2/(9D) = 0.01, where 

is the gas viscosity. 

LITERATURE CITED 

I. S. S. Grigoryan, T. V. Marchenko, and Yu. L. Yakimov, "Transient motions of gas in shock 
tubes of variable cross section," Prikl. Mekh. Tekh. Fiz., No. 4 (1961). 

2. V. P. Korobeinikov, V. V. Markov, and I. S. Men'shov, "Problem of a strong explosion in 
a dust-filled gas," Transactions of the V. A. Steklov Mathematics Institute [in Russian], 
Vol. 163 (1984). 

3. L. I. Sedov, Similarity and Dimensional Methods in Mechanics [in Russian], Nauka (1987). 
4. L. V. Shidlovskaya, "Motion of gas in shock tubes of variable cross section and its appli- 

cation to solar wind perturbations," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3 
(1976). 

5. N. S. Zakharov and V. P. Korobeinikov, "Self-similar motion of gas during the local admis- 
sion of mass and energy to a combustible mixture," Izv. Akad. Nauk SSSR, Mekh. Zhidk. 
Gaza, No. 4 (1979). 

6. V. P. Korobeinikov, "Perturbation method in flows of dust-filled gas," Usp. Mat.~ Nauk, 
4__0, No. 4(24), (1985). 

MODELING TRANSIENT TURBULENT AXISYMMETRIC FLOW IN NARROW GAPS 

BETWEEN CONTOURED ROTATING SURFACES 

V. K. Nikul'chikov, N. D. Sosnovskii, and A. V. Shvab UDC 532.517.4 

Rotating channels of various shapes are widely used in modern power plants, turbines, 
and chemical manufacturing equipment. In particular, efficient air-centrifuge classifiers, 
which are used in the powder technology, and the express analyzers which are based on them 
[i, 2] make it possible to fractionate powdered materials by particle dimension at a high 
rate and to determine their granulometric composition. The working zone of these devices 
is a narrow gap between rotating contoured surfaces, in which the parts flow and are sepa- 
rated by size by resistive and centrifugal forces. A diagram of the separation zone is pre- 
sented in Fig. i. 

Here the torsional turbulent flow of an incompressible gas is studied, based on the 
parabolic equations, obtained from the"narrow channel" approximation. The unsynmnetric 
channel is studied when one of the limiting surfaces is flat and perpendicular to the axis 
of rotation, and the second is contoured such that the gap width varies according to H = 
H(R), where R is the radius. The transient nature of the flow is caused by the forced change 
of the rotation rate of the walls ~ or the flow Q through the gap. The problem has been 
examined in the steady-state formulation [3] based on the two-parameter Launder-Jones model 
[4, 5]. 

The operational efficiency of these devices can be further enhanced by establishing 
their fundamental physical characteristics, which are based on models which adequately de- 
scribe the hydrodynamics of transient torsional axisymmetric flows which are directed both 
toward the axis of rotation (Q < O, Fig. i) and toward the periphery (Q > 0). 
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